Continuous neural control of a bionic limb restores biomimetic gait after amputation

  • Cimolato, A. et al. EMG-driven control in lower limb prostheses: a topic-based systematic review. J. Neuroeng. Rehabil. 19, 43 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahkami, B., Ahmed, K., Thesleff, A., Hargrove, L. & Ortiz-Catalan, M. Electromyography-based control of lower limb prostheses: a systematic review. IEEE Trans. Med. Robot. Bionics 5, 547–562 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eilenberg, M. F., Geyer, H. & Herr, H. M. Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 164–173 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Herr, H. M. & Grabowski, A. M. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc. R. Soc. B 279, 457–464 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Shultz, A. H., Lawson, B. E. & Goldfarb, M. Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 495–505 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lenzi, T., Hargrove, L. & Sensinger, J. Speed-adaptation mechanism: robotic prostheses can actively regulate joint torque. IEEE Robot. Autom. Mag. 21, 94–107 (2014).

    Article 

    Google Scholar
     

  • Culver, S., Bartlett, H., Shultz, A. & Goldfarb, M. A stair ascent and descent controller for a powered ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 993–1002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mendez, J., Hood, S., Gunnel, A. & Lenzi, T. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles. Sci. Robot. 5, eaba6635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, G., Hood, S. & Lenzi, T. Stand-up, squat, lunge, and walk with a robotic knee and ankle prosthesis under shared neural control. IEEE Open J. Eng. Med. Biol. 2, 267–277 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Best, T. K., Welker, C. G., Rouse, E. J. & Gregg, R. D. Data-driven variable impedance control of a powered knee–ankle prosthesis for adaptive speed and incline walking. IEEE Trans. Robot. 39, 2151–2169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bovi, G., Rabuffetti, M., Mazzoleni, P. & Ferrarin, M. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33, 6–13 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Song, S. & Geyer, H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593, 3493–3511 (2015).

      Save on the PS5 Slim Console While Supplies Last

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFadyen, B. J. & Winter, D. A. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21, 733–744 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montgomery, J. R. & Grabowski, A. M. The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds. R. Soc. Open Sci. 5, 180550 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. & Ferris, D. P. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb–prosthetic interface. J. Neuroeng. Rehabil. 9, 55 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyedali, M., Czerniecki, J. M., Morgenroth, D. C. & Hahn, M. E. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. J. Neuroeng. Rehabil. 9, 29 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S., Wensman, J. P. & Ferris, D. P. Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 573–581 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, B., Wang, Q. & Wang, L. Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans. Mechatron. 20, 2146–2157 (2015).

    Article 

    Google Scholar
     

  • Hargrove, L. J., Young, A. J. & Simon, A. M. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. JAMA 63, 1405–1406 (2016).


    Google Scholar
     

  • Huang, H. et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 58, 2867–2875 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hargrove, L. J. et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 369, 1237–1242 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Kannape, O. A. & Herr, H. M. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In IEEE International Conference on Rehabilitation Robotics 1–5 (IEEE, 2013); https://doi.org/10.1109/ICORR.2013.6650391

  • Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).

      Reebok FloatZig 1 Adventure Review: FloatZig and Jetsam

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, B. J. et al. Outcomes after 294 transtibial amputations with the posterior myocutaneous flap. Int. J. Low. Extrem. Wounds 13, 33–40 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prochazka, A. Proprioceptive feedback and movement regulation. Compr. Physiol. 76, 89–127 (1996).

    Article 

    Google Scholar
     

  • Raspopovic, S., Valle, G. & Petrini, F. M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 20, 925–939 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45.e7 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saal, H. P. & Bensmaia, S. J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79, 344–353 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Petrini, F. M. et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11, eaav8939 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Charkhkar, H. et al. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 15, 056002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Petrini, F. M. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charkhkar, H., Christie, B. P. & Triolo, R. J. Sensory neuroprosthesis improves postural stability during sensory organization test in lower-limb amputees. Sci. Rep. 10, 6984 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valle, G. et al. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci. Adv. 7, eabd8354 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, S. H., Wiggin, M. B. & Sawicki, G. S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522, 212–215 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J. & Hogan, N. Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7, e31767 (2012).

      Security Cameras, Anker Power Bank, Razer Gaming Headset, and More

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clites, T. R., Carty, M. J., Srinivasan, S. S., Zorzos, A. N. & Herr, H. M. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J. Neural Eng. 14, 036002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Clites, T. R. et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10, eaap8373 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Song, H. et al. Agonist–antagonist muscle strain in the residual limb preserves motor control and perception after amputation. Commun. Med. 2, 97 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orendurff, M. S. et al. Functional level assessment of individuals with transtibial limb loss: evaluation in the clinical setting versus objective community ambulatory activity. J. Rehabil. Assist. Technol. Eng. 3, 205566831663631 (2016).


    Google Scholar
     

  • Hasson, C. J., Miller, R. H. & Caldwell, G. E. Contractile and elastic ankle joint muscular properties in young and older adults. PLoS ONE 6, e15953 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. E., Madigan, M. L. & Nussbaum, M. A. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40, 3105–3113 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prochazka, A. Quantifying proprioception. Prog. Brain Res. 123, 133–142 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grey, M. J., Nielsen, J. B., Mazzaro, N. & Sinkjaer, T. Positive force feedback in human walking. J. Neurophysiol. 581, 99–105 (2007).

    CAS 

    Google Scholar
     

  • Prochazka, A., Gillard, D. & Bennett, D. J. Positive force feedback control of muscles. J. Neurophysiol. 77, 3226–3236 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Au, S. & Herr, H. Powered ankle–foot prosthesis. IEEE Robot. Autom. Mag. 15, 52–59 (2008).

    Article 

    Google Scholar
     

  • Palmer, M. L. Sagittal Plane Characterization of Normal Human Ankle Function Across a Range of Walking Gait Speeds. MSc thesis, Massachusetts Institute of Technology (2002).

  • Lloyd, C. H., Stanhope, S. J., Davis, I. S. & Royer, T. D. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture 32, 296–300 (2010).

      Best Zenless Zone Zero Nekomata build

    Article 
    PubMed 

    Google Scholar
     

  • Siebers, H. L. et al. Comparison of different symmetry indices for the quantification of dynamic joint angles. BMC Sports Sci. Med. Rehabil. 13, 130 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haefeli, J., Vögeli, S., Michel, J. & Dietz, V. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity. Eur. J. Neurosci. 33, 338–348 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • McFadyen, B. J. & Carnahan, H. Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp. Brain Res. 114, 500–506 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malone, A., Kiernan, D., French, H., Saunders, V. & O’Brien, T. Obstacle crossing during gait in children with cerebral palsy: cross-sectional study with kinematic analysis of dynamic balance and trunk control. Phys. Ther. 96, 1208–1215 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Latt, M. D., Lord, S. R., Morris, J. G. L. & Fung, V. S. C. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease: predictors of falls in Parkinson’s disease. Mov. Disord. 24, 1280–1289 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Cappellini, G. et al. Locomotor patterns during obstacle avoidance in children with cerebral palsy. J. Neurophysiol. 124, 574–590 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khudados, E., Cody, F. W. J. & O’Boyle, D. J. Proprioceptive regulation of voluntary ankle movements, demonstrated using muscle vibration, is impaired by Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 67, 504–510 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmalz, T., Blumentritt, S. & Jarasch, R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16, 255–263 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Genin, J. J., Bastien, G. J., Franck, B., Detrembleur, C. & Willems, P. A. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. Eur. J. Appl. Physiol. 103, 655–663 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Norvell, D. C. et al. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch. Phys. Med. Rehabil. 86, 487–493 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Struyf, P. A., Van Heugten, C. M., Hitters, M. W. & Smeets, R. J. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch. Phys. Med. Rehabil. 90, 440–446 (2009).

      Apple iPhone 16 To Gain Unique Feature Upgrade In Coming Weeks

    Article 
    PubMed 

    Google Scholar
     

  • Gailey, R., Allen, K., Castles, J., Kucharik, J. & Roeder, M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J. Rehabil. Res. Dev. 45, 15–30 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ehde, D. M. et al. Back pain as a secondary disability in persons with lower limb amputations. Arch. Phys. Med. Rehabil. 82, 731–734 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabowski, A. M. & D’Andrea, S. Effects of a powered ankle–foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J. Neuroeng. Rehabil. 10, 49 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cacciola, C. E., Kannenberg, A., Hibler, K. D. & Howell, J. Impact of a powered prosthetic ankle–foot component on musculoskeletal pain in individuals with transtibial amputation: a real-world cross-sectional study with concurrent and recalled pain and functional ratings. J. Prosthet. Orthot. 36, 2–9 (2024).

    Article 

    Google Scholar
     

  • Bekrater-Bodmann, R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front. Neurorobot. 14, 604376 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Preatoni, G., Valle, G., Petrini, F. M. & Raspopovic, S. Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Curr. Biol. 31, 1065–1071.e4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dempster, W. T. & Gaughran, G. R. L. Properties of body segments based on size and weight. Am. J. Anat. 120, 33–54 (1967).

    Article 

    Google Scholar
     

  • Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human–machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, R. & Van Steenberghe, D. From osseoperception to implant-mediated sensory–motor interactions and related clinical implications. J. Oral. Rehabil. 33, 282–292 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, B. & Poka, A. Osteomyoplastic transtibial amputation: the Ertl technique. J. Am Acad. Orthop. Surg. 24, 259–265 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yeon, S. H. et al. Acquisition of surface EMG using flexible and low-profile electrodes for lower extremity neuroprosthetic control. IEEE Trans. Med. Robot. Bionics 3, 563–572 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeon, S. H., Song, H. & Herr, H. M. Spatiotemporally synchronized surface EMG and ultrasonography measurement using a flexible and low-profile EMG electrode. In International Conference of the IEEE Engineering in Medicine and Biology Society 6242–6246 (IEEE, 2021); https://doi.org/10.1109/EMBC46164.2021.9629789

      Google Search Ranks AI Spam Above Original Reporting in News Results
  • Farris, D. J. & Lichtwark, G. A. UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput. Methods Prog. Biomed. 128, 111–118 (2016).

    Article 

    Google Scholar
     

  • Gillett, J. G., Barrett, R. S. & Lichtwark, G. A. Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound. Comput. Methods Biomech. Biomed. Eng. 16, 678–687 (2013).

    Article 

    Google Scholar
     

  • Hsieh, T.-H. et al. Design, characterization, and preliminary assessment of a two-degree-of-freedom powered ankle–foot prosthesis. Biomimetics 9, 76 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogan, N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Contr. 29, 681–690 (1984).

    Article 

    Google Scholar
     

  • Hogan, N. The mechanics of multi-joint posture and movement control. Biol. Cybern. 52, 315–331 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeon, S. H. & Herr, H. M. Rejecting impulse artifacts from surface EMG signals using real-time cumulative histogram filtering. In International Conference of the IEEE Engineering in Medicine and Biology Society 6235–6241 (IEEE, 2021); https://doi.org/10.1109/EMBC46164.2021.9631052

  • Markowitz, J. et al. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos. Trans. R. Soc. B 366, 1621–1631 (2011).

    Article 

    Google Scholar
     

  • Reznick, E. et al. Lower-limb kinematics and kinetics during continuously varying human locomotion. Sci. Data 8, 282 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godha, S. & Lachapelle, G. Foot mounted inertial system for pedestrian navigation. Meas. Sci. Technol. 19, 075202 (2008).

    Article 

    Google Scholar
     

  • Sinitski, E. H., Hansen, A. H. & Wilken, J. M. Biomechanics of the ankle–foot system during stair ambulation: implications for design of advanced ankle–foot prostheses. J. Biomech. 45, 588–594 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Comment