Cimolato, A. et al. EMG-driven control in lower limb prostheses: a topic-based systematic review. J. Neuroeng. Rehabil. 19, 43 (2022).
Ahkami, B., Ahmed, K., Thesleff, A., Hargrove, L. & Ortiz-Catalan, M. Electromyography-based control of lower limb prostheses: a systematic review. IEEE Trans. Med. Robot. Bionics 5, 547–562 (2023).
Eilenberg, M. F., Geyer, H. & Herr, H. M. Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 164–173 (2010).
Herr, H. M. & Grabowski, A. M. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc. R. Soc. B 279, 457–464 (2012).
Shultz, A. H., Lawson, B. E. & Goldfarb, M. Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 495–505 (2016).
Lenzi, T., Hargrove, L. & Sensinger, J. Speed-adaptation mechanism: robotic prostheses can actively regulate joint torque. IEEE Robot. Autom. Mag. 21, 94–107 (2014).
Culver, S., Bartlett, H., Shultz, A. & Goldfarb, M. A stair ascent and descent controller for a powered ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 993–1002 (2018).
Mendez, J., Hood, S., Gunnel, A. & Lenzi, T. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles. Sci. Robot. 5, eaba6635 (2020).
Hunt, G., Hood, S. & Lenzi, T. Stand-up, squat, lunge, and walk with a robotic knee and ankle prosthesis under shared neural control. IEEE Open J. Eng. Med. Biol. 2, 267–277 (2021).
Best, T. K., Welker, C. G., Rouse, E. J. & Gregg, R. D. Data-driven variable impedance control of a powered knee–ankle prosthesis for adaptive speed and incline walking. IEEE Trans. Robot. 39, 2151–2169 (2023).
Bovi, G., Rabuffetti, M., Mazzoleni, P. & Ferrarin, M. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33, 6–13 (2011).
Song, S. & Geyer, H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593, 3493–3511 (2015).
McFadyen, B. J. & Winter, D. A. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21, 733–744 (1988).
Montgomery, J. R. & Grabowski, A. M. The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds. R. Soc. Open Sci. 5, 180550 (2018).
Huang, S. & Ferris, D. P. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb–prosthetic interface. J. Neuroeng. Rehabil. 9, 55 (2012).
Seyedali, M., Czerniecki, J. M., Morgenroth, D. C. & Hahn, M. E. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. J. Neuroeng. Rehabil. 9, 29 (2012).
Huang, S., Wensman, J. P. & Ferris, D. P. Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 573–581 (2016).
Chen, B., Wang, Q. & Wang, L. Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans. Mechatron. 20, 2146–2157 (2015).
Hargrove, L. J., Young, A. J. & Simon, A. M. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. JAMA 63, 1405–1406 (2016).
Huang, H. et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 58, 2867–2875 (2011).
Hargrove, L. J. et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 369, 1237–1242 (2013).
Wang, J., Kannape, O. A. & Herr, H. M. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In IEEE International Conference on Rehabilitation Robotics 1–5 (IEEE, 2013); https://doi.org/10.1109/ICORR.2013.6650391
Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947 (2011).
Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).
Brown, B. J. et al. Outcomes after 294 transtibial amputations with the posterior myocutaneous flap. Int. J. Low. Extrem. Wounds 13, 33–40 (2014).
Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).
Prochazka, A. Proprioceptive feedback and movement regulation. Compr. Physiol. 76, 89–127 (1996).
Raspopovic, S., Valle, G. & Petrini, F. M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 20, 925–939 (2021).
George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).
Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45.e7 (2018).
Saal, H. P. & Bensmaia, S. J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79, 344–353 (2015).
Petrini, F. M. et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11, eaav8939 (2019).
Charkhkar, H. et al. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 15, 056002 (2018).
Petrini, F. M. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019).
Charkhkar, H., Christie, B. P. & Triolo, R. J. Sensory neuroprosthesis improves postural stability during sensory organization test in lower-limb amputees. Sci. Rep. 10, 6984 (2020).
Valle, G. et al. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci. Adv. 7, eabd8354 (2021).
Collins, S. H., Wiggin, M. B. & Sawicki, G. S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522, 212–215 (2015).
Ahn, J. & Hogan, N. Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7, e31767 (2012).
Clites, T. R., Carty, M. J., Srinivasan, S. S., Zorzos, A. N. & Herr, H. M. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J. Neural Eng. 14, 036002 (2017).
Clites, T. R. et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10, eaap8373 (2018).
Song, H. et al. Agonist–antagonist muscle strain in the residual limb preserves motor control and perception after amputation. Commun. Med. 2, 97 (2022).
Orendurff, M. S. et al. Functional level assessment of individuals with transtibial limb loss: evaluation in the clinical setting versus objective community ambulatory activity. J. Rehabil. Assist. Technol. Eng. 3, 205566831663631 (2016).
Hasson, C. J., Miller, R. H. & Caldwell, G. E. Contractile and elastic ankle joint muscular properties in young and older adults. PLoS ONE 6, e15953 (2011).
Anderson, D. E., Madigan, M. L. & Nussbaum, M. A. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40, 3105–3113 (2007).
Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).
Prochazka, A. Quantifying proprioception. Prog. Brain Res. 123, 133–142 (1999).
Grey, M. J., Nielsen, J. B., Mazzaro, N. & Sinkjaer, T. Positive force feedback in human walking. J. Neurophysiol. 581, 99–105 (2007).
Prochazka, A., Gillard, D. & Bennett, D. J. Positive force feedback control of muscles. J. Neurophysiol. 77, 3226–3236 (1997).
Au, S. & Herr, H. Powered ankle–foot prosthesis. IEEE Robot. Autom. Mag. 15, 52–59 (2008).
Palmer, M. L. Sagittal Plane Characterization of Normal Human Ankle Function Across a Range of Walking Gait Speeds. MSc thesis, Massachusetts Institute of Technology (2002).
Lloyd, C. H., Stanhope, S. J., Davis, I. S. & Royer, T. D. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture 32, 296–300 (2010).
Siebers, H. L. et al. Comparison of different symmetry indices for the quantification of dynamic joint angles. BMC Sports Sci. Med. Rehabil. 13, 130 (2021).
Haefeli, J., Vögeli, S., Michel, J. & Dietz, V. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity. Eur. J. Neurosci. 33, 338–348 (2011).
McFadyen, B. J. & Carnahan, H. Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp. Brain Res. 114, 500–506 (1997).
Malone, A., Kiernan, D., French, H., Saunders, V. & O’Brien, T. Obstacle crossing during gait in children with cerebral palsy: cross-sectional study with kinematic analysis of dynamic balance and trunk control. Phys. Ther. 96, 1208–1215 (2016).
Latt, M. D., Lord, S. R., Morris, J. G. L. & Fung, V. S. C. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease: predictors of falls in Parkinson’s disease. Mov. Disord. 24, 1280–1289 (2009).
Cappellini, G. et al. Locomotor patterns during obstacle avoidance in children with cerebral palsy. J. Neurophysiol. 124, 574–590 (2020).
Khudados, E., Cody, F. W. J. & O’Boyle, D. J. Proprioceptive regulation of voluntary ankle movements, demonstrated using muscle vibration, is impaired by Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 67, 504–510 (1999).
Schmalz, T., Blumentritt, S. & Jarasch, R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16, 255–263 (2002).
Genin, J. J., Bastien, G. J., Franck, B., Detrembleur, C. & Willems, P. A. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. Eur. J. Appl. Physiol. 103, 655–663 (2008).
Norvell, D. C. et al. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch. Phys. Med. Rehabil. 86, 487–493 (2005).
Struyf, P. A., Van Heugten, C. M., Hitters, M. W. & Smeets, R. J. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch. Phys. Med. Rehabil. 90, 440–446 (2009).
Gailey, R., Allen, K., Castles, J., Kucharik, J. & Roeder, M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J. Rehabil. Res. Dev. 45, 15–30 (2008).
Ehde, D. M. et al. Back pain as a secondary disability in persons with lower limb amputations. Arch. Phys. Med. Rehabil. 82, 731–734 (2001).
Grabowski, A. M. & D’Andrea, S. Effects of a powered ankle–foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J. Neuroeng. Rehabil. 10, 49 (2013).
Cacciola, C. E., Kannenberg, A., Hibler, K. D. & Howell, J. Impact of a powered prosthetic ankle–foot component on musculoskeletal pain in individuals with transtibial amputation: a real-world cross-sectional study with concurrent and recalled pain and functional ratings. J. Prosthet. Orthot. 36, 2–9 (2024).
Bekrater-Bodmann, R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front. Neurorobot. 14, 604376 (2021).
Preatoni, G., Valle, G., Petrini, F. M. & Raspopovic, S. Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Curr. Biol. 31, 1065–1071.e4 (2021).
Dempster, W. T. & Gaughran, G. R. L. Properties of body segments based on size and weight. Am. J. Anat. 120, 33–54 (1967).
Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human–machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).
Jacobs, R. & Van Steenberghe, D. From osseoperception to implant-mediated sensory–motor interactions and related clinical implications. J. Oral. Rehabil. 33, 282–292 (2006).
Taylor, B. & Poka, A. Osteomyoplastic transtibial amputation: the Ertl technique. J. Am Acad. Orthop. Surg. 24, 259–265 (2016).
Yeon, S. H. et al. Acquisition of surface EMG using flexible and low-profile electrodes for lower extremity neuroprosthetic control. IEEE Trans. Med. Robot. Bionics 3, 563–572 (2021).
Yeon, S. H., Song, H. & Herr, H. M. Spatiotemporally synchronized surface EMG and ultrasonography measurement using a flexible and low-profile EMG electrode. In International Conference of the IEEE Engineering in Medicine and Biology Society 6242–6246 (IEEE, 2021); https://doi.org/10.1109/EMBC46164.2021.9629789
Farris, D. J. & Lichtwark, G. A. UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput. Methods Prog. Biomed. 128, 111–118 (2016).
Gillett, J. G., Barrett, R. S. & Lichtwark, G. A. Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound. Comput. Methods Biomech. Biomed. Eng. 16, 678–687 (2013).
Hsieh, T.-H. et al. Design, characterization, and preliminary assessment of a two-degree-of-freedom powered ankle–foot prosthesis. Biomimetics 9, 76 (2024).
Hogan, N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Contr. 29, 681–690 (1984).
Hogan, N. The mechanics of multi-joint posture and movement control. Biol. Cybern. 52, 315–331 (1985).
Yeon, S. H. & Herr, H. M. Rejecting impulse artifacts from surface EMG signals using real-time cumulative histogram filtering. In International Conference of the IEEE Engineering in Medicine and Biology Society 6235–6241 (IEEE, 2021); https://doi.org/10.1109/EMBC46164.2021.9631052
Markowitz, J. et al. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos. Trans. R. Soc. B 366, 1621–1631 (2011).
Reznick, E. et al. Lower-limb kinematics and kinetics during continuously varying human locomotion. Sci. Data 8, 282 (2021).
Godha, S. & Lachapelle, G. Foot mounted inertial system for pedestrian navigation. Meas. Sci. Technol. 19, 075202 (2008).
Sinitski, E. H., Hansen, A. H. & Wilken, J. M. Biomechanics of the ankle–foot system during stair ambulation: implications for design of advanced ankle–foot prostheses. J. Biomech. 45, 588–594 (2012).
Information Security Asia is the go-to website for the latest cybersecurity and tech news in various sectors. Our expert writers provide insights and analysis that you can trust, so you can stay ahead of the curve and protect your business. Whether you are a small business, an enterprise or even a government agency, we have the latest updates and advice for all aspects of cybersecurity.